Tag Archives: pytorch

Digital pathology classification using Pytorch + Densenet

In this blog post, we discuss how to train a DenseNet style deep learning classifier, using Pytorch, for differentiating between different types of lymphoma cancer. This post and code are based on the post discussing segmentation using U-Net and is thus broken down into the same 4 components:

  1. Making training/testing databases,
  2. Training a model,
  3. Visualizing results in the validation set,
  4. Generating output.

Continue reading Digital pathology classification using Pytorch + Densenet

Digital Pathology Segmentation using Pytorch + Unet

In this blog post, we discuss how to train a U-net style deep learning classifier, using Pytorch, for segmenting epithelium versus stroma regions. This post is broken down into 4 components following along other pipeline approaches we’ve discussed in the past:

  1. Making training/testing databases,
  2. Training a model,
  3. Visualizing results in the validation set,
  4. Generating output.

This model focuses on using solely Python and freely available tools (i.e., no matlab).

This blog post assumes moderate knowledge of convolutional neural networks, depending on the readers background, our JPI paper may be sufficient, or a more thorough resource such as Andrew NG’s deep learning course.

Continue reading Digital Pathology Segmentation using Pytorch + Unet

Using Matlab, Pytables (hdf5) and (a bit of) Pytorch

As we’re testing out for migration to new deep learning frameworks, one of the questions that remained was dataset interoperability. Essentially, we want to be able to create a dataset for training a deep learning framework from as many applications as possible (python, matlab, R, etc), so that our students can use a language that are familiar to them, as well as leverage all of the existing in-house code we have for data manipulation.

Continue reading Using Matlab, Pytables (hdf5) and (a bit of) Pytorch